31.1.6 problem 1.6
Internal
problem
ID
[5704]
Book
:
Differential
Equations,
By
George
Boole
F.R.S.
1865
Section
:
Chapter
2
Problem
number
:
1.6
Date
solved
:
Sunday, March 30, 2025 at 10:03:24 AM
CAS
classification
:
[_separable]
\begin{align*} \sec \left (x \right )^{2} \tan \left (y\right )+\sec \left (y\right )^{2} \tan \left (x \right ) y^{\prime }&=0 \end{align*}
✓ Maple. Time used: 0.507 (sec). Leaf size: 80
ode:=sec(x)^2*tan(y(x))+sec(y(x))^2*tan(x)*diff(y(x),x) = 0;
dsolve(ode,y(x), singsol=all);
\[
y = \frac {\arctan \left (-\frac {2 c_1 \sin \left (2 x \right )}{c_1^{2} \cos \left (2 x \right )-c_1^{2}-\cos \left (2 x \right )-1}, \frac {c_1^{2} \cos \left (2 x \right )-c_1^{2}+\cos \left (2 x \right )+1}{c_1^{2} \cos \left (2 x \right )-c_1^{2}-\cos \left (2 x \right )-1}\right )}{2}
\]
✓ Mathematica. Time used: 0.477 (sec). Leaf size: 68
ode=Sec[x]^2*Tan[y[x]]+Sec[y[x]]^2*Tan[x]*D[y[x],x]==0;
ic={};
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
\begin{align*}
y(x)\to -\frac {1}{2} \arccos (-\tanh (\text {arctanh}(\cos (2 x))+2 c_1)) \\
y(x)\to \frac {1}{2} \arccos (-\tanh (\text {arctanh}(\cos (2 x))+2 c_1)) \\
y(x)\to 0 \\
y(x)\to -\frac {\pi }{2} \\
y(x)\to \frac {\pi }{2} \\
\end{align*}
✓ Sympy. Time used: 8.872 (sec). Leaf size: 80
from sympy import *
x = symbols("x")
y = Function("y")
ode = Eq(tan(x)*Derivative(y(x), x)/cos(y(x))**2 + tan(y(x))/cos(x)**2,0)
ics = {}
dsolve(ode,func=y(x),ics=ics)
\[
\left [ y{\left (x \right )} = \pi - \frac {\operatorname {acos}{\left (\frac {- e^{4 C_{1}} \cos ^{2}{\left (x \right )} - \cos ^{2}{\left (x \right )} + 1}{e^{4 C_{1}} \cos ^{2}{\left (x \right )} - \cos ^{2}{\left (x \right )} + 1} \right )}}{2}, \ y{\left (x \right )} = \frac {\operatorname {acos}{\left (\frac {e^{4 C_{1}} \cos ^{2}{\left (x \right )} + \cos ^{2}{\left (x \right )} - 1}{- e^{4 C_{1}} \cos ^{2}{\left (x \right )} + \cos ^{2}{\left (x \right )} - 1} \right )}}{2}\right ]
\]