Internal
problem
ID
[5689]
Book
:
Differential
and
integral
calculus,
vol
II
By
N.
Piskunov.
1974
Section
:
Chapter
1
Problem
number
:
Example,
page
25
Date
solved
:
Sunday, March 30, 2025 at 10:02:24 AM
CAS
classification
:
[[_homogeneous, `class A`], _rational, _dAlembert]
ode:=diff(y(x),x) = x*y(x)/(x^2-y(x)^2); dsolve(ode,y(x), singsol=all);
ode=D[y[x],x]==x*y[x]/(x^2-y[x]^2); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-x*y(x)/(x**2 - y(x)**2) + Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)