29.37.1 problem 1104

Internal problem ID [5659]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 37
Problem number : 1104
Date solved : Sunday, March 30, 2025 at 09:53:43 AM
CAS classification : [_rational]

\begin{align*} x^{2} \left ({y^{\prime }}^{6}+3 y^{4}+3 y^{2}+1\right )&=a^{2} \end{align*}

Maple
ode:=x^2*(diff(y(x),x)^6+3*y(x)^4+3*y(x)^2+1) = a^2; 
dsolve(ode,y(x), singsol=all);
 
\[ \text {No solution found} \]
Mathematica
ode=x^2 ( (D[y[x],x])^6 +3 (y[x])^4 +3 (y[x])^2 + 1)==a^2; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 

Not solved

Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
y = Function("y") 
ode = Eq(-a**2 + x**2*(3*y(x)**4 + 3*y(x)**2 + Derivative(y(x), x)**6 + 1),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out