Internal
problem
ID
[5659]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Various
37
Problem
number
:
1104
Date
solved
:
Sunday, March 30, 2025 at 09:53:43 AM
CAS
classification
:
[_rational]
ode:=x^2*(diff(y(x),x)^6+3*y(x)^4+3*y(x)^2+1) = a^2; dsolve(ode,y(x), singsol=all);
ode=x^2 ( (D[y[x],x])^6 +3 (y[x])^4 +3 (y[x])^2 + 1)==a^2; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
Not solved
from sympy import * x = symbols("x") a = symbols("a") y = Function("y") ode = Eq(-a**2 + x**2*(3*y(x)**4 + 3*y(x)**2 + Derivative(y(x), x)**6 + 1),0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out