Internal
problem
ID
[5637]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Various
36
Problem
number
:
1076
Date
solved
:
Sunday, March 30, 2025 at 09:35:06 AM
CAS
classification
:
[_quadrature]
ode:=(x+2*y(x))*diff(y(x),x)^3+3*(x+y(x))*diff(y(x),x)^2+(y(x)+2*x)*diff(y(x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=(x+2 y[x])(D[y[x],x])^3+3 (x+y[x]) (D[y[x],x])^2+ (2 x+y[x]) D[y[x],x] ==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq((x + 2*y(x))*Derivative(y(x), x)**3 + (2*x + y(x))*Derivative(y(x), x) + (3*x + 3*y(x))*Derivative(y(x), x)**2,0) ics = {} dsolve(ode,func=y(x),ics=ics)