Internal
problem
ID
[5624]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Various
35
Problem
number
:
1060
Date
solved
:
Sunday, March 30, 2025 at 09:21:53 AM
CAS
classification
:
[_quadrature]
ode:=x*diff(y(x),x)^3-(x+x^2+y(x))*diff(y(x),x)^2+(x^2+y(x)+x*y(x))*diff(y(x),x)-x*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=x (D[y[x],x])^3 - (x+x^2+y[x])(D[y[x],x])^2 + (x^2+y[x]+x y[x]) D[y[x],x]-x y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-x*y(x) + x*Derivative(y(x), x)**3 - (x**2 + x + y(x))*Derivative(y(x), x)**2 + (x**2 + x*y(x) + y(x))*Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)