Internal
problem
ID
[5617]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Various
35
Problem
number
:
1052
Date
solved
:
Sunday, March 30, 2025 at 09:20:17 AM
CAS
classification
:
[_quadrature]
ode:=diff(y(x),x)^3-(x^2+x*y(x)^2+y(x)^4)*diff(y(x),x)^2+x*y(x)^2*(x^2+x*y(x)^2+y(x)^4)*diff(y(x),x)-x^3*y(x)^6 = 0; dsolve(ode,y(x), singsol=all);
ode=(D[y[x],x])^3 -(x^2+x y[x]^2+ y[x]^4) (D[y[x],x])^2 +x y[x]^2(x^2 +x y[x]^2+ y[x]^4) D[y[x],x]-x^3 y[x]^6==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-x**3*y(x)**6 + x*(x**2 + x*y(x)**2 + y(x)**4)*y(x)**2*Derivative(y(x), x) - (x**2 + x*y(x)**2 + y(x)**4)*Derivative(y(x), x)**2 + Derivative(y(x), x)**3,0) ics = {} dsolve(ode,func=y(x),ics=ics)