29.34.14 problem 1016

Internal problem ID [5585]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 34
Problem number : 1016
Date solved : Sunday, March 30, 2025 at 09:05:03 AM
CAS classification : [_quadrature]

\begin{align*} {y^{\prime }}^{3}&=a \,x^{n} \end{align*}

Maple. Time used: 0.043 (sec). Leaf size: 98
ode:=diff(y(x),x)^3 = a*x^n; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= \frac {3 x \left (a \,x^{n}\right )^{{1}/{3}}+c_1 \left (n +3\right )}{n +3} \\ y &= \frac {\left (-3 i \sqrt {3}\, x -3 x \right ) \left (a \,x^{n}\right )^{{1}/{3}}+2 c_1 \left (n +3\right )}{2 n +6} \\ y &= \frac {\left (3 i \sqrt {3}\, x -3 x \right ) \left (a \,x^{n}\right )^{{1}/{3}}+2 c_1 \left (n +3\right )}{2 n +6} \\ \end{align*}
Mathematica. Time used: 0.008 (sec). Leaf size: 95
ode=(D[y[x],x])^3 ==a x^n; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to \frac {3 \sqrt [3]{a} x^{\frac {n}{3}+1}}{n+3}+c_1 \\ y(x)\to -\frac {3 \sqrt [3]{-1} \sqrt [3]{a} x^{\frac {n}{3}+1}}{n+3}+c_1 \\ y(x)\to \frac {3 (-1)^{2/3} \sqrt [3]{a} x^{\frac {n}{3}+1}}{n+3}+c_1 \\ \end{align*}
Sympy. Time used: 1.193 (sec). Leaf size: 133
from sympy import * 
x = symbols("x") 
a = symbols("a") 
n = symbols("n") 
y = Function("y") 
ode = Eq(-a*x**n + Derivative(y(x), x)**3,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = \frac {C_{1} \left (n + 3\right ) + 3 \sqrt [3]{a} x e^{\frac {n \log {\left (x \right )}}{3}}}{n + 3}, \ y{\left (x \right )} = \frac {C_{1} \left (n + 3\right ) - 3 \sqrt [3]{a} x e^{\frac {n \log {\left (x \right )}}{3}} - 3 \sqrt {3} i \sqrt [3]{a} x e^{\frac {n \log {\left (x \right )}}{3}}}{2 \left (n + 3\right )}, \ y{\left (x \right )} = \frac {C_{1} \left (n + 3\right ) - 3 \sqrt [3]{a} x e^{\frac {n \log {\left (x \right )}}{3}} + 3 \sqrt {3} i \sqrt [3]{a} x e^{\frac {n \log {\left (x \right )}}{3}}}{2 \left (n + 3\right )}\right ] \]