29.32.9 problem 943

Internal problem ID [5521]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 32
Problem number : 943
Date solved : Sunday, March 30, 2025 at 08:29:23 AM
CAS classification : [[_1st_order, _with_linear_symmetries]]

\begin{align*} y {y^{\prime }}^{2}&={\mathrm e}^{2 x} \end{align*}

Maple. Time used: 0.045 (sec). Leaf size: 67
ode:=y(x)*diff(y(x),x)^2 = exp(2*x); 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} \frac {2 y^{2}+3 c_1 \sqrt {y}-3 \sqrt {y \,{\mathrm e}^{2 x}}}{3 \sqrt {y}} &= 0 \\ \frac {2 y^{2}+3 c_1 \sqrt {y}+3 \sqrt {y \,{\mathrm e}^{2 x}}}{3 \sqrt {y}} &= 0 \\ \end{align*}
Mathematica. Time used: 2.139 (sec). Leaf size: 47
ode=y[x] (D[y[x],x])^2==Exp[2 x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to \left (\frac {3}{2}\right )^{2/3} \left (-e^x+c_1\right ){}^{2/3} \\ y(x)\to \left (\frac {3}{2}\right )^{2/3} \left (e^x+c_1\right ){}^{2/3} \\ \end{align*}
Sympy. Time used: 24.131 (sec). Leaf size: 170
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(y(x)*Derivative(y(x), x)**2 - exp(2*x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = \frac {\sqrt [3]{2} \cdot 3^{\frac {2}{3}} \left (C_{1} - e^{x}\right )^{\frac {2}{3}}}{2}, \ y{\left (x \right )} = \frac {\sqrt [3]{2} \left (- 3^{\frac {2}{3}} + 3 \sqrt [6]{3} i\right ) \left (C_{1} - e^{x}\right )^{\frac {2}{3}}}{4}, \ y{\left (x \right )} = \frac {\sqrt [3]{2} \left (- 3^{\frac {2}{3}} - 3 \sqrt [6]{3} i\right ) \left (C_{1} - e^{x}\right )^{\frac {2}{3}}}{4}, \ y{\left (x \right )} = \frac {\sqrt [3]{2} \cdot 3^{\frac {2}{3}} \left (C_{1} + e^{x}\right )^{\frac {2}{3}}}{2}, \ y{\left (x \right )} = \frac {\sqrt [3]{2} \left (- 3^{\frac {2}{3}} + 3 \sqrt [6]{3} i\right ) \left (C_{1} + e^{x}\right )^{\frac {2}{3}}}{4}, \ y{\left (x \right )} = \frac {\sqrt [3]{2} \left (- 3^{\frac {2}{3}} - 3 \sqrt [6]{3} i\right ) \left (C_{1} + e^{x}\right )^{\frac {2}{3}}}{4}\right ] \]