Internal
problem
ID
[5478]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Various
30
Problem
number
:
898
Date
solved
:
Sunday, March 30, 2025 at 08:16:42 AM
CAS
classification
:
[[_1st_order, _with_linear_symmetries], _rational]
ode:=x^2*diff(y(x),x)^2-2*x*diff(y(x),x)*y(x)-x+y(x)*(1+y(x)) = 0; dsolve(ode,y(x), singsol=all);
ode=x^2 (D[y[x],x])^2-2 x y[x] D[y[x],x]-x+y[x](1+y[x])==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**2*Derivative(y(x), x)**2 - 2*x*y(x)*Derivative(y(x), x) - x + (y(x) + 1)*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)