29.30.16 problem 875

Internal problem ID [5456]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 30
Problem number : 875
Date solved : Sunday, March 30, 2025 at 08:14:06 AM
CAS classification : [_quadrature]

\begin{align*} x {y^{\prime }}^{2}+\left (1-x^{2} y\right ) y^{\prime }-x y&=0 \end{align*}

Maple. Time used: 0.003 (sec). Leaf size: 21
ode:=x*diff(y(x),x)^2+(1-x^2*y(x))*diff(y(x),x)-x*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= c_1 \,{\mathrm e}^{\frac {x^{2}}{2}} \\ y &= -\ln \left (x \right )+c_1 \\ \end{align*}
Mathematica. Time used: 0.012 (sec). Leaf size: 28
ode=x (D[y[x],x])^2+(1-x^2 y[x])D[y[x],x]-x y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to c_1 e^{\frac {x^2}{2}} \\ y(x)\to -\log (x)+c_1 \\ \end{align*}
Sympy. Time used: 0.443 (sec). Leaf size: 17
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x*y(x) + x*Derivative(y(x), x)**2 + (-x**2*y(x) + 1)*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = C_{1} - \log {\left (x \right )}, \ y{\left (x \right )} = C_{1} e^{\frac {x^{2}}{2}}\right ] \]