29.29.24 problem 846

Internal problem ID [5429]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 29
Problem number : 846
Date solved : Sunday, March 30, 2025 at 08:13:00 AM
CAS classification : [[_homogeneous, `class A`], _rational, _dAlembert]

\begin{align*} x {y^{\prime }}^{2}+x -2 y&=0 \end{align*}

Maple. Time used: 0.028 (sec). Leaf size: 96
ode:=x*diff(y(x),x)^2+x-2*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= \frac {\left (2 \operatorname {LambertW}\left (\frac {\sqrt {c_1 x}}{c_1}\right )^{2}+2 \operatorname {LambertW}\left (\frac {\sqrt {c_1 x}}{c_1}\right )+1\right ) x}{2 \operatorname {LambertW}\left (\frac {\sqrt {c_1 x}}{c_1}\right )^{2}} \\ y &= \frac {\left (2 \operatorname {LambertW}\left (-\frac {\sqrt {c_1 x}}{c_1}\right )^{2}+2 \operatorname {LambertW}\left (-\frac {\sqrt {c_1 x}}{c_1}\right )+1\right ) x}{2 \operatorname {LambertW}\left (-\frac {\sqrt {c_1 x}}{c_1}\right )^{2}} \\ \end{align*}
Mathematica. Time used: 0.583 (sec). Leaf size: 97
ode=x (D[y[x],x])^2+x-2 y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} \text {Solve}\left [\frac {2}{\sqrt {\frac {2 y(x)}{x}-1}-1}-2 \log \left (\sqrt {\frac {2 y(x)}{x}-1}-1\right )&=\log (x)+c_1,y(x)\right ] \\ \text {Solve}\left [\frac {2}{\sqrt {\frac {2 y(x)}{x}-1}+1}+2 \log \left (\sqrt {\frac {2 y(x)}{x}-1}+1\right )&=-\log (x)+c_1,y(x)\right ] \\ \end{align*}
Sympy. Time used: 6.925 (sec). Leaf size: 75
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x*Derivative(y(x), x)**2 + x - 2*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ \log {\left (x \right )} = C_{1} - \log {\left (- \sqrt {-1 + \frac {2 y{\left (x \right )}}{x}} + \frac {y{\left (x \right )}}{x} \right )} + \frac {2}{\sqrt {-1 + \frac {2 y{\left (x \right )}}{x}} - 1}, \ \log {\left (x \right )} = C_{1} - \log {\left (\sqrt {-1 + \frac {2 y{\left (x \right )}}{x}} + \frac {y{\left (x \right )}}{x} \right )} - \frac {2}{\sqrt {-1 + \frac {2 y{\left (x \right )}}{x}} + 1}\right ] \]