29.29.14 problem 836

Internal problem ID [5419]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 29
Problem number : 836
Date solved : Sunday, March 30, 2025 at 08:11:09 AM
CAS classification : [[_homogeneous, `class G`]]

\begin{align*} 3 {y^{\prime }}^{2}+4 x y^{\prime }+x^{2}-y&=0 \end{align*}

Maple. Time used: 0.042 (sec). Leaf size: 93
ode:=3*diff(y(x),x)^2+4*x*diff(y(x),x)+x^2-y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= -\frac {x^{2}}{3} \\ y &= -\frac {x^{2}}{4}+\frac {\sqrt {3}\, c_1 x}{6}+\frac {c_1^{2}}{4} \\ y &= -\frac {x^{2}}{4}-\frac {\sqrt {3}\, c_1 x}{6}+\frac {c_1^{2}}{4} \\ y &= -\frac {x^{2}}{4}-\frac {\sqrt {3}\, c_1 x}{6}+\frac {c_1^{2}}{4} \\ y &= -\frac {x^{2}}{4}+\frac {\sqrt {3}\, c_1 x}{6}+\frac {c_1^{2}}{4} \\ \end{align*}
Mathematica. Time used: 3.96 (sec). Leaf size: 121
ode=3 (D[y[x],x])^2+4 x D[y[x],x]+x^2-y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to \frac {1}{12} \left (-3 x^2+2 x-2 e^{c_1} (x+1)+1+e^{2 c_1}\right ) \\ y(x)\to \frac {-3 x^2-3 x^2 \tanh ^2\left (\frac {c_1}{2}\right )+4 x+2 (3 x-2) x \tanh \left (\frac {c_1}{2}\right )+4}{12 \left (-1+\tanh \left (\frac {c_1}{2}\right )\right ){}^2} \\ y(x)\to -\frac {x^2}{3} \\ y(x)\to \frac {1}{12} \left (-3 x^2+2 x+1\right ) \\ \end{align*}
Sympy. Time used: 1.640 (sec). Leaf size: 14
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**2 + 4*x*Derivative(y(x), x) - y(x) + 3*Derivative(y(x), x)**2,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = - \frac {x^{2}}{3} + \frac {\left (C_{1} + x\right )^{2}}{12} \]