29.29.1 problem 823

Internal problem ID [5406]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 29
Problem number : 823
Date solved : Sunday, March 30, 2025 at 08:10:27 AM
CAS classification : [_separable]

\begin{align*} {y^{\prime }}^{2}-\left (x -y\right ) y y^{\prime }-x y^{3}&=0 \end{align*}

Maple. Time used: 0.003 (sec). Leaf size: 20
ode:=diff(y(x),x)^2-(x-y(x))*y(x)*diff(y(x),x)-x*y(x)^3 = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= \frac {1}{x +c_1} \\ y &= c_1 \,{\mathrm e}^{\frac {x^{2}}{2}} \\ \end{align*}
Mathematica. Time used: 0.14 (sec). Leaf size: 34
ode=(D[y[x],x])^2-(x-y[x])*y[x]*D[y[x],x]-x*y[x]^3==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to \frac {1}{x-c_1} \\ y(x)\to c_1 e^{\frac {x^2}{2}} \\ y(x)\to 0 \\ \end{align*}
Sympy. Time used: 0.336 (sec). Leaf size: 17
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x*y(x)**3 - (x - y(x))*y(x)*Derivative(y(x), x) + Derivative(y(x), x)**2,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = \frac {1}{C_{1} + x}, \ y{\left (x \right )} = C_{1} e^{\frac {x^{2}}{2}}\right ] \]