29.27.12 problem 778

Internal problem ID [5362]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 27
Problem number : 778
Date solved : Sunday, March 30, 2025 at 08:03:35 AM
CAS classification : [_quadrature]

\begin{align*} {y^{\prime }}^{2}+a y^{\prime }+b x&=0 \end{align*}

Maple. Time used: 0.027 (sec). Leaf size: 70
ode:=diff(y(x),x)^2+a*diff(y(x),x)+b*x = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= \frac {\left (a^{2}-4 b x \right )^{{3}/{2}}-6 b \left (a x -2 c_1 \right )}{12 b} \\ y &= \frac {\left (-a^{2}+4 b x \right ) \sqrt {a^{2}-4 b x}-6 b \left (a x -2 c_1 \right )}{12 b} \\ \end{align*}
Mathematica. Time used: 0.019 (sec). Leaf size: 68
ode=(D[y[x],x])^2+a*D[y[x],x]+b*x==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to -\frac {\left (a^2-4 b x\right )^{3/2}+6 a b x}{12 b}+c_1 \\ y(x)\to \frac {1}{2} \left (\frac {\left (a^2-4 b x\right )^{3/2}}{6 b}-a x\right )+c_1 \\ \end{align*}
Sympy. Time used: 0.275 (sec). Leaf size: 48
from sympy import * 
x = symbols("x") 
a = symbols("a") 
b = symbols("b") 
y = Function("y") 
ode = Eq(a*Derivative(y(x), x) + b*x + Derivative(y(x), x)**2,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = C_{1} - \frac {a x}{2} + \frac {\left (a^{2} - 4 b x\right )^{\frac {3}{2}}}{12 b}, \ y{\left (x \right )} = C_{1} - \frac {a x}{2} - \frac {\left (a^{2} - 4 b x\right )^{\frac {3}{2}}}{12 b}\right ] \]