29.27.9 problem 775

Internal problem ID [5359]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 27
Problem number : 775
Date solved : Sunday, March 30, 2025 at 08:03:32 AM
CAS classification : [_quadrature]

\begin{align*} {y^{\prime }}^{2}-5 y^{\prime }+6&=0 \end{align*}

Maple. Time used: 0.002 (sec). Leaf size: 17
ode:=diff(y(x),x)^2-5*diff(y(x),x)+6 = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= 3 x +c_1 \\ y &= 2 x +c_1 \\ \end{align*}
Mathematica. Time used: 0.003 (sec). Leaf size: 21
ode=(D[y[x],x])^2-5*D[y[x],x]+6==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to 2 x+c_1 \\ y(x)\to 3 x+c_1 \\ \end{align*}
Sympy. Time used: 0.126 (sec). Leaf size: 14
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(Derivative(y(x), x)**2 - 5*Derivative(y(x), x) + 6,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = C_{1} + 3 x, \ y{\left (x \right )} = C_{1} + 2 x\right ] \]