29.27.2 problem 767
Internal
problem
ID
[5352]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Various
27
Problem
number
:
767
Date
solved
:
Sunday, March 30, 2025 at 08:02:30 AM
CAS
classification
:
[[_1st_order, `_with_symmetry_[F(x),G(x)*y+H(x)]`]]
\begin{align*} {y^{\prime }}^{2}+f \left (x \right ) \left (y-a \right ) \left (y-b \right ) \left (y-c \right )&=0 \end{align*}
✓ Maple. Time used: 0.099 (sec). Leaf size: 156
ode:=diff(y(x),x)^2+f(x)*(y(x)-a)*(y(x)-b)*(y(x)-c) = 0;
dsolve(ode,y(x), singsol=all);
\begin{align*}
\int _{}^{y}\frac {1}{\sqrt {\left (\textit {\_a} -c \right ) \left (\textit {\_a} -b \right ) \left (\textit {\_a} -a \right )}}d \textit {\_a} -\frac {\int _{}^{x}\sqrt {-f \left (\textit {\_a} \right ) \left (y-c \right ) \left (y-b \right ) \left (y-a \right )}d \textit {\_a}}{\sqrt {\left (y-c \right ) \left (y-b \right ) \left (y-a \right )}}+c_1 &= 0 \\
\int _{}^{y}\frac {1}{\sqrt {\left (\textit {\_a} -c \right ) \left (\textit {\_a} -b \right ) \left (\textit {\_a} -a \right )}}d \textit {\_a} +\frac {\int _{}^{x}\sqrt {-f \left (\textit {\_a} \right ) \left (y-c \right ) \left (y-b \right ) \left (y-a \right )}d \textit {\_a}}{\sqrt {\left (y-c \right ) \left (y-b \right ) \left (y-a \right )}}+c_1 &= 0 \\
\end{align*}
✓ Mathematica. Time used: 39.505 (sec). Leaf size: 228
ode=(D[y[x],x])^2+f[x]*(y[x]-a)(y[x]-b)*(y[x]-c)==0;
ic={};
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
\begin{align*}
y(x)\to \text {ns}\left (\frac {1}{2} \sqrt {a-b} \left (c_1+\int _1^x-\sqrt {f(K[1])}dK[1]\right )|\frac {a-c}{a-b}\right ){}^2 \left (a \text {sn}\left (\frac {1}{2} \sqrt {a-b} \left (c_1+\int _1^x-\sqrt {f(K[1])}dK[1]\right )|\frac {a-c}{a-b}\right ){}^2-a+b\right ) \\
y(x)\to \text {ns}\left (\frac {1}{2} \sqrt {a-b} \left (c_1+\int _1^x\sqrt {f(K[2])}dK[2]\right )|\frac {a-c}{a-b}\right ){}^2 \left (a \text {sn}\left (\frac {1}{2} \sqrt {a-b} \left (c_1+\int _1^x\sqrt {f(K[2])}dK[2]\right )|\frac {a-c}{a-b}\right ){}^2-a+b\right ) \\
y(x)\to a \\
y(x)\to b \\
y(x)\to c \\
\end{align*}
✓ Sympy. Time used: 69.061 (sec). Leaf size: 541
from sympy import *
x = symbols("x")
a = symbols("a")
b = symbols("b")
c = symbols("c")
y = Function("y")
f = Function("f")
ode = Eq((-a + y(x))*(-b + y(x))*(-c + y(x))*f(x) + Derivative(y(x), x)**2,0)
ics = {}
dsolve(ode,func=y(x),ics=ics)
\[
\text {Solution too large to show}
\]