29.26.19 problem 755

Internal problem ID [5340]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 26
Problem number : 755
Date solved : Sunday, March 30, 2025 at 08:00:40 AM
CAS classification : [_quadrature]

\begin{align*} {y^{\prime }}^{2}&=1+y^{2} \end{align*}

Maple. Time used: 0.028 (sec). Leaf size: 29
ode:=diff(y(x),x)^2 = 1+y(x)^2; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= -i \\ y &= i \\ y &= -\sinh \left (-x +c_1 \right ) \\ y &= \sinh \left (-x +c_1 \right ) \\ \end{align*}
Mathematica. Time used: 0.122 (sec). Leaf size: 37
ode=(D[y[x],x])^2==1+y[x]^2; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to -\sinh (x-c_1) \\ y(x)\to \sinh (x+c_1) \\ y(x)\to -i \\ y(x)\to i \\ \end{align*}
Sympy. Time used: 6.239 (sec). Leaf size: 14
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-y(x)**2 + Derivative(y(x), x)**2 - 1,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = \sinh {\left (C_{1} - x \right )}, \ y{\left (x \right )} = \sinh {\left (C_{1} + x \right )}\right ] \]