Internal
problem
ID
[5321]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Various
25
Problem
number
:
731
Date
solved
:
Sunday, March 30, 2025 at 07:55:17 AM
CAS
classification
:
[[_homogeneous, `class G`], _dAlembert]
ode:=x*(x+(x^2+y(x)^2)^(1/2))*diff(y(x),x)+y(x)*(x^2+y(x)^2)^(1/2) = 0; dsolve(ode,y(x), singsol=all);
ode=x*(x+Sqrt[x^2+y[x]^2])*D[y[x],x] +y[x]*Sqrt[x^2+y[x]^2]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x*(x + sqrt(x**2 + y(x)**2))*Derivative(y(x), x) + sqrt(x**2 + y(x)**2)*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)