29.24.34 problem 697

Internal problem ID [5287]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 24
Problem number : 697
Date solved : Sunday, March 30, 2025 at 07:51:26 AM
CAS classification : [[_homogeneous, `class G`], _rational]

\begin{align*} x \left (x^{4}-2 y^{3}\right ) y^{\prime }+\left (2 x^{4}+y^{3}\right ) y&=0 \end{align*}

Maple. Time used: 0.262 (sec). Leaf size: 28
ode:=x*(x^4-2*y(x)^3)*diff(y(x),x)+(2*x^4+y(x)^3)*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ \ln \left (x \right )-c_1 +\frac {3 \ln \left (\frac {y \left (-2 x^{4}+y^{3}\right )}{x^{{16}/{3}}}\right )}{10} = 0 \]
Mathematica. Time used: 60.144 (sec). Leaf size: 1139
ode=x(x^4-2 y[x]^3)D[y[x],x]+(2 x^4+y[x]^3)y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} \text {Solution too large to show}\end{align*}

Sympy. Time used: 154.646 (sec). Leaf size: 1465
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x*(x**4 - 2*y(x)**3)*Derivative(y(x), x) + (2*x**4 + y(x)**3)*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \text {Solution too large to show} \]