Internal
problem
ID
[5287]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Various
24
Problem
number
:
697
Date
solved
:
Sunday, March 30, 2025 at 07:51:26 AM
CAS
classification
:
[[_homogeneous, `class G`], _rational]
ode:=x*(x^4-2*y(x)^3)*diff(y(x),x)+(2*x^4+y(x)^3)*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=x(x^4-2 y[x]^3)D[y[x],x]+(2 x^4+y[x]^3)y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x*(x**4 - 2*y(x)**3)*Derivative(y(x), x) + (2*x**4 + y(x)**3)*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)