29.24.23 problem 685
Internal
problem
ID
[5276]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Various
24
Problem
number
:
685
Date
solved
:
Sunday, March 30, 2025 at 07:39:49 AM
CAS
classification
:
[[_homogeneous, `class A`], _rational, _dAlembert]
\begin{align*} \left (3 x^{2}+2 y^{2}\right ) y y^{\prime }+x^{3}&=0 \end{align*}
✓ Maple. Time used: 0.190 (sec). Leaf size: 137
ode:=(3*x^2+2*y(x)^2)*y(x)*diff(y(x),x)+x^3 = 0;
dsolve(ode,y(x), singsol=all);
\begin{align*}
y &= -\frac {\sqrt {-8 x^{2} c_1^{2}-2 \sqrt {8 x^{2} c_1^{2}+1}+2}}{4 c_1} \\
y &= \frac {\sqrt {-8 x^{2} c_1^{2}-2 \sqrt {8 x^{2} c_1^{2}+1}+2}}{4 c_1} \\
y &= -\frac {\sqrt {-8 x^{2} c_1^{2}+2 \sqrt {8 x^{2} c_1^{2}+1}+2}}{4 c_1} \\
y &= \frac {\sqrt {-8 x^{2} c_1^{2}+2 \sqrt {8 x^{2} c_1^{2}+1}+2}}{4 c_1} \\
\end{align*}
✓ Mathematica. Time used: 22.171 (sec). Leaf size: 253
ode=(3*x^2+2*y[x]^2)*y[x]*D[y[x],x]+x^3==0;
ic={};
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
\begin{align*}
y(x)\to -\frac {\sqrt {-4 x^2-\sqrt {8 e^{2 c_1} x^2+e^{4 c_1}}+e^{2 c_1}}}{2 \sqrt {2}} \\
y(x)\to \frac {\sqrt {-4 x^2-\sqrt {8 e^{2 c_1} x^2+e^{4 c_1}}+e^{2 c_1}}}{2 \sqrt {2}} \\
y(x)\to -\frac {\sqrt {-4 x^2+\sqrt {8 e^{2 c_1} x^2+e^{4 c_1}}+e^{2 c_1}}}{2 \sqrt {2}} \\
y(x)\to \frac {\sqrt {-4 x^2+\sqrt {8 e^{2 c_1} x^2+e^{4 c_1}}+e^{2 c_1}}}{2 \sqrt {2}} \\
y(x)\to \text {Undefined} \\
y(x)\to -\frac {\sqrt {-x^2}}{\sqrt {2}} \\
y(x)\to \frac {\sqrt {-x^2}}{\sqrt {2}} \\
\end{align*}
✓ Sympy. Time used: 11.637 (sec). Leaf size: 119
from sympy import *
x = symbols("x")
y = Function("y")
ode = Eq(x**3 + (3*x**2 + 2*y(x)**2)*y(x)*Derivative(y(x), x),0)
ics = {}
dsolve(ode,func=y(x),ics=ics)
\[
\left [ y{\left (x \right )} = - \frac {\sqrt {2} \sqrt {C_{1} - x^{2} - \sqrt {C_{1} \left (C_{1} + 2 x^{2}\right )}}}{2}, \ y{\left (x \right )} = \frac {\sqrt {2} \sqrt {C_{1} - x^{2} - \sqrt {C_{1} \left (C_{1} + 2 x^{2}\right )}}}{2}, \ y{\left (x \right )} = - \frac {\sqrt {2} \sqrt {C_{1} - x^{2} + \sqrt {C_{1} \left (C_{1} + 2 x^{2}\right )}}}{2}, \ y{\left (x \right )} = \frac {\sqrt {2} \sqrt {C_{1} - x^{2} + \sqrt {C_{1} \left (C_{1} + 2 x^{2}\right )}}}{2}\right ]
\]