29.22.6 problem 612

Internal problem ID [5206]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 22
Problem number : 612
Date solved : Sunday, March 30, 2025 at 06:52:08 AM
CAS classification : [_exact, _rational, [_1st_order, `_with_symmetry_[F(x)*G(y),0]`]]

\begin{align*} \left (x^{3}+2 y-y^{2}\right ) y^{\prime }+3 x^{2} y&=0 \end{align*}

Maple. Time used: 0.003 (sec). Leaf size: 442
ode:=(x^3+2*y(x)-y(x)^2)*diff(y(x),x)+3*x^2*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= \frac {\left (12 x^{3}+12 c_1 +8+4 \sqrt {-4 x^{9}-3 x^{6}+18 c_1 \,x^{3}+9 c_1^{2}+12 c_1}\right )^{{1}/{3}}}{2}+\frac {2 x^{3}+2}{\left (12 x^{3}+12 c_1 +8+4 \sqrt {-4 x^{9}-3 x^{6}+18 c_1 \,x^{3}+9 c_1^{2}+12 c_1}\right )^{{1}/{3}}}+1 \\ y &= 1-\frac {\left (12 x^{3}+12 c_1 +8+4 \sqrt {-4 x^{9}-3 x^{6}+18 c_1 \,x^{3}+9 c_1^{2}+12 c_1}\right )^{{1}/{3}}}{4}+\frac {-x^{3}-1}{\left (12 x^{3}+12 c_1 +8+4 \sqrt {-4 x^{9}-3 x^{6}+18 c_1 \,x^{3}+9 c_1^{2}+12 c_1}\right )^{{1}/{3}}}+\frac {i \left (x^{3}-\frac {\left (12 x^{3}+12 c_1 +8+4 \sqrt {-4 x^{9}-3 x^{6}+18 c_1 \,x^{3}+9 c_1^{2}+12 c_1}\right )^{{2}/{3}}}{4}+1\right ) \sqrt {3}}{\left (12 x^{3}+12 c_1 +8+4 \sqrt {-4 x^{9}-3 x^{6}+18 c_1 \,x^{3}+9 c_1^{2}+12 c_1}\right )^{{1}/{3}}} \\ y &= \frac {\frac {\left (i \sqrt {3}-1\right ) \left (12 x^{3}+12 c_1 +8+4 \sqrt {-4 x^{9}-3 x^{6}+18 c_1 \,x^{3}+9 c_1^{2}+12 c_1}\right )^{{2}/{3}}}{4}-1+\left (12 x^{3}+12 c_1 +8+4 \sqrt {-4 x^{9}-3 x^{6}+18 c_1 \,x^{3}+9 c_1^{2}+12 c_1}\right )^{{1}/{3}}-i \left (x^{3}+1\right ) \sqrt {3}-x^{3}}{\left (12 x^{3}+12 c_1 +8+4 \sqrt {-4 x^{9}-3 x^{6}+18 c_1 \,x^{3}+9 c_1^{2}+12 c_1}\right )^{{1}/{3}}} \\ \end{align*}
Mathematica. Time used: 5.512 (sec). Leaf size: 409
ode=(x^3+2 y[x]-y[x]^2)D[y[x],x]+3 x^2 y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to -\frac {\sqrt [3]{2} \left (x^3+1\right )}{\sqrt [3]{-3 x^3+\sqrt {-4 x^9-3 x^6-18 c_1 x^3+3 c_1 (-4+3 c_1)}-2+3 c_1}}-\frac {\sqrt [3]{-3 x^3+\sqrt {-4 x^9-3 x^6-18 c_1 x^3+3 c_1 (-4+3 c_1)}-2+3 c_1}}{\sqrt [3]{2}}+1 \\ y(x)\to \frac {\left (1+i \sqrt {3}\right ) \left (x^3+1\right )}{2^{2/3} \sqrt [3]{-3 x^3+\sqrt {-4 x^9-3 x^6-18 c_1 x^3+3 c_1 (-4+3 c_1)}-2+3 c_1}}+\frac {\left (1-i \sqrt {3}\right ) \sqrt [3]{-3 x^3+\sqrt {-4 x^9-3 x^6-18 c_1 x^3+3 c_1 (-4+3 c_1)}-2+3 c_1}}{2 \sqrt [3]{2}}+1 \\ y(x)\to \frac {\left (1-i \sqrt {3}\right ) \left (x^3+1\right )}{2^{2/3} \sqrt [3]{-3 x^3+\sqrt {-4 x^9-3 x^6-18 c_1 x^3+3 c_1 (-4+3 c_1)}-2+3 c_1}}+\frac {\left (1+i \sqrt {3}\right ) \sqrt [3]{-3 x^3+\sqrt {-4 x^9-3 x^6-18 c_1 x^3+3 c_1 (-4+3 c_1)}-2+3 c_1}}{2 \sqrt [3]{2}}+1 \\ y(x)\to 0 \\ \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(3*x**2*y(x) + (x**3 - y(x)**2 + 2*y(x))*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out