29.22.4 problem 610

Internal problem ID [5204]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 22
Problem number : 610
Date solved : Sunday, March 30, 2025 at 06:52:01 AM
CAS classification : [_rational]

\begin{align*} \left (x +2 y+y^{2}\right ) y^{\prime }+y \left (1+y\right )+\left (x +y\right )^{2} y^{2}&=0 \end{align*}

Maple. Time used: 0.013 (sec). Leaf size: 110
ode:=(x+2*y(x)+y(x)^2)*diff(y(x),x)+y(x)*(1+y(x))+(x+y(x))^2*y(x)^2 = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= \frac {x^{2}-c_1 x +\sqrt {x^{4}-2 c_1 \,x^{3}+\left (c_1^{2}-2\right ) x^{2}+\left (2 c_1 +4\right ) x -4 c_1 +1}-1}{-2 x +2 c_1} \\ y &= \frac {-x^{2}+c_1 x +\sqrt {x^{4}-2 c_1 \,x^{3}+\left (c_1^{2}-2\right ) x^{2}+\left (2 c_1 +4\right ) x -4 c_1 +1}+1}{2 x -2 c_1} \\ \end{align*}
Mathematica. Time used: 1.899 (sec). Leaf size: 146
ode=(x+2 y[x]+y[x]^2)D[y[x],x]+y[x](1+y[x])+(x+y[x])^2 y[x]^2==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to -\frac {x^2+\sqrt {\left (-x^2+c_1 x+1\right ){}^2+4 (x-c_1)}-c_1 x-1}{2 (x-c_1)} \\ y(x)\to \frac {-x^2+\sqrt {\left (-x^2+c_1 x+1\right ){}^2+4 (x-c_1)}+c_1 x+1}{2 (x-c_1)} \\ y(x)\to \frac {1}{2} \left (-\sqrt {x^2}-x\right ) \\ y(x)\to \frac {1}{2} \left (\sqrt {x^2}-x\right ) \\ \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq((x + y(x))**2*y(x)**2 + (y(x) + 1)*y(x) + (x + y(x)**2 + 2*y(x))*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out