29.22.1 problem 607

Internal problem ID [5201]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 22
Problem number : 607
Date solved : Sunday, March 30, 2025 at 06:51:50 AM
CAS classification : [[_homogeneous, `class A`], _rational, _dAlembert]

\begin{align*} \left (3 x^{2}-y^{2}\right ) y^{\prime }&=2 x y \end{align*}

Maple. Time used: 0.009 (sec). Leaf size: 313
ode:=(3*x^2-y(x)^2)*diff(y(x),x) = 2*x*y(x); 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= \frac {1+\frac {\left (-108 x^{2} c_1^{2}+12 \sqrt {3}\, x \sqrt {27 x^{2} c_1^{2}-4}\, c_1 +8\right )^{{1}/{3}}}{2}+\frac {2}{\left (-108 x^{2} c_1^{2}+12 \sqrt {3}\, x \sqrt {27 x^{2} c_1^{2}-4}\, c_1 +8\right )^{{1}/{3}}}}{3 c_1} \\ y &= -\frac {\left (1+i \sqrt {3}\right ) \left (-108 x^{2} c_1^{2}+12 \sqrt {3}\, x \sqrt {27 x^{2} c_1^{2}-4}\, c_1 +8\right )^{{2}/{3}}-4 i \sqrt {3}-4 \left (-108 x^{2} c_1^{2}+12 \sqrt {3}\, x \sqrt {27 x^{2} c_1^{2}-4}\, c_1 +8\right )^{{1}/{3}}+4}{12 \left (-108 x^{2} c_1^{2}+12 \sqrt {3}\, x \sqrt {27 x^{2} c_1^{2}-4}\, c_1 +8\right )^{{1}/{3}} c_1} \\ y &= \frac {\left (i \sqrt {3}-1\right ) \left (-108 x^{2} c_1^{2}+12 \sqrt {3}\, x \sqrt {27 x^{2} c_1^{2}-4}\, c_1 +8\right )^{{2}/{3}}-4 i \sqrt {3}+4 \left (-108 x^{2} c_1^{2}+12 \sqrt {3}\, x \sqrt {27 x^{2} c_1^{2}-4}\, c_1 +8\right )^{{1}/{3}}-4}{12 \left (-108 x^{2} c_1^{2}+12 \sqrt {3}\, x \sqrt {27 x^{2} c_1^{2}-4}\, c_1 +8\right )^{{1}/{3}} c_1} \\ \end{align*}
Mathematica. Time used: 60.158 (sec). Leaf size: 458
ode=(3 x^2-y[x]^2)D[y[x],x]==2 x y[x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to \frac {1}{3} \left (\frac {\sqrt [3]{27 e^{c_1} x^2+3 \sqrt {81 e^{2 c_1} x^4-12 e^{4 c_1} x^2}-2 e^{3 c_1}}}{\sqrt [3]{2}}+\frac {\sqrt [3]{2} e^{2 c_1}}{\sqrt [3]{27 e^{c_1} x^2+3 \sqrt {81 e^{2 c_1} x^4-12 e^{4 c_1} x^2}-2 e^{3 c_1}}}-e^{c_1}\right ) \\ y(x)\to \frac {i \left (\sqrt {3}+i\right ) \sqrt [3]{27 e^{c_1} x^2+3 \sqrt {81 e^{2 c_1} x^4-12 e^{4 c_1} x^2}-2 e^{3 c_1}}}{6 \sqrt [3]{2}}-\frac {i \left (\sqrt {3}-i\right ) e^{2 c_1}}{3\ 2^{2/3} \sqrt [3]{27 e^{c_1} x^2+3 \sqrt {81 e^{2 c_1} x^4-12 e^{4 c_1} x^2}-2 e^{3 c_1}}}-\frac {e^{c_1}}{3} \\ y(x)\to -\frac {i \left (\sqrt {3}-i\right ) \sqrt [3]{27 e^{c_1} x^2+3 \sqrt {81 e^{2 c_1} x^4-12 e^{4 c_1} x^2}-2 e^{3 c_1}}}{6 \sqrt [3]{2}}+\frac {i \left (\sqrt {3}+i\right ) e^{2 c_1}}{3\ 2^{2/3} \sqrt [3]{27 e^{c_1} x^2+3 \sqrt {81 e^{2 c_1} x^4-12 e^{4 c_1} x^2}-2 e^{3 c_1}}}-\frac {e^{c_1}}{3} \\ \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-2*x*y(x) + (3*x**2 - y(x)**2)*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out