Internal
problem
ID
[5172]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Various
21
Problem
number
:
578
Date
solved
:
Sunday, March 30, 2025 at 06:46:56 AM
CAS
classification
:
[[_homogeneous, `class G`], _rational, [_Abel, `2nd type`, `class C`]]
ode:=x*(1+2*x*y(x))*diff(y(x),x)+(1+2*x*y(x)-x^2*y(x)^2)*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=x(1+2 x y[x])D[y[x],x]+(1+2 x y[x]-x^2 y[x]^2)y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x*(2*x*y(x) + 1)*Derivative(y(x), x) + (-x**2*y(x)**2 + 2*x*y(x) + 1)*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)