29.20.11 problem 556

Internal problem ID [5152]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 20
Problem number : 556
Date solved : Sunday, March 30, 2025 at 06:45:35 AM
CAS classification : [_exact, _rational, [_Abel, `2nd type`, `class B`]]

\begin{align*} \left (3+6 x y+x^{2}\right ) y^{\prime }+2 x +2 x y+3 y^{2}&=0 \end{align*}

Maple. Time used: 0.003 (sec). Leaf size: 75
ode:=(3+6*x*y(x)+x^2)*diff(y(x),x)+2*x+2*x*y(x)+3*y(x)^2 = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= \frac {-x^{2}-3+\sqrt {x^{4}-12 x^{3}-12 c_1 x +6 x^{2}+9}}{6 x} \\ y &= \frac {-x^{2}-3-\sqrt {x^{4}-12 x^{3}-12 c_1 x +6 x^{2}+9}}{6 x} \\ \end{align*}
Mathematica. Time used: 0.615 (sec). Leaf size: 83
ode=(3+6 x y[x]+x^2)D[y[x],x]+2 x+2 x y[x]+3 y[x]^2==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to -\frac {x^2+\sqrt {x^4-12 x^3+6 x^2+36 c_1 x+9}+3}{6 x} \\ y(x)\to -\frac {x^2-\sqrt {x^4-12 x^3+6 x^2+36 c_1 x+9}+3}{6 x} \\ \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(2*x*y(x) + 2*x + (x**2 + 6*x*y(x) + 3)*Derivative(y(x), x) + 3*y(x)**2,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out