29.20.1 problem 546

Internal problem ID [5142]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 20
Problem number : 546
Date solved : Sunday, March 30, 2025 at 06:44:02 AM
CAS classification : [_exact, _rational, [_Abel, `2nd type`, `class B`]]

\begin{align*} \left (3-x +2 x y\right ) y^{\prime }+3 x^{2}-y+y^{2}&=0 \end{align*}

Maple. Time used: 0.003 (sec). Leaf size: 63
ode:=(3-x+2*x*y(x))*diff(y(x),x)+3*x^2-y(x)+y(x)^2 = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= \frac {x -3+\sqrt {9-4 x^{4}+x^{2}+\left (-4 c_1 -6\right ) x}}{2 x} \\ y &= \frac {x -3-\sqrt {9-4 x^{4}+x^{2}+\left (-4 c_1 -6\right ) x}}{2 x} \\ \end{align*}
Mathematica. Time used: 0.583 (sec). Leaf size: 75
ode=(3-x+2 x y[x])D[y[x],x]+3 x^2-y[x]+y[x]^2==0 ; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to -\frac {\sqrt {-4 x^4+x^2-6 x+4 c_1 x+9}-x+3}{2 x} \\ y(x)\to \frac {\sqrt {-4 x^4+x^2+(-6+4 c_1) x+9}+x-3}{2 x} \\ \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(3*x**2 + (2*x*y(x) - x + 3)*Derivative(y(x), x) + y(x)**2 - y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out