29.19.23 problem 536

Internal problem ID [5132]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 19
Problem number : 536
Date solved : Sunday, March 30, 2025 at 06:43:21 AM
CAS classification : [[_homogeneous, `class G`], _rational, [_Abel, `2nd type`, `class B`]]

\begin{align*} x \left (2 x^{3}+y\right ) y^{\prime }&=6 y^{2} \end{align*}

Maple. Time used: 0.436 (sec). Leaf size: 64
ode:=x*(2*x^3+y(x))*diff(y(x),x) = 6*y(x)^2; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= \frac {x^{3} \left (x^{3}-\sqrt {x \left (x^{3}+8 c_1 \right )}\, x +4 c_1 \right )}{2 c_1} \\ y &= \frac {x^{3} \left (x^{3}+\sqrt {x \left (x^{3}+8 c_1 \right )}\, x +4 c_1 \right )}{2 c_1} \\ \end{align*}
Mathematica. Time used: 1.285 (sec). Leaf size: 123
ode=x(2 x^3+y[x])D[y[x],x]==6 y[x]^2; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to 2 x^3 \left (-1+\frac {2}{1-\frac {4 x^{3/2}}{\sqrt {16 x^3+c_1}}}\right ) \\ y(x)\to 2 x^3 \left (-1+\frac {2}{1+\frac {4 x^{3/2}}{\sqrt {16 x^3+c_1}}}\right ) \\ y(x)\to 0 \\ y(x)\to 2 x^3 \\ y(x)\to \frac {2 \left (\left (x^3\right )^{3/2}-x^{9/2}\right )}{x^{3/2}+\sqrt {x^3}} \\ \end{align*}
Sympy. Time used: 1.287 (sec). Leaf size: 78
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x*(2*x**3 + y(x))*Derivative(y(x), x) - 6*y(x)**2,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = - \frac {3 C_{1} \sqrt {x^{9} \left (9 C_{1}^{2} x^{3} + 8\right )}}{2} + \frac {x^{3} \left (9 C_{1}^{2} x^{3} + 4\right )}{2}, \ y{\left (x \right )} = \frac {3 C_{1} \sqrt {x^{9} \left (9 C_{1}^{2} x^{3} + 8\right )}}{2} + \frac {x^{3} \left (9 C_{1}^{2} x^{3} + 4\right )}{2}\right ] \]