Internal
problem
ID
[5111]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Various
19
Problem
number
:
515
Date
solved
:
Sunday, March 30, 2025 at 06:41:03 AM
CAS
classification
:
[[_homogeneous, `class A`], _dAlembert]
ode:=x*y(x)*diff(y(x),x)+x^2*arccot(y(x)/x)-y(x)^2 = 0; dsolve(ode,y(x), singsol=all);
ode=x y[x] D[y[x],x]+x^2 ArcCot[y[x]/x]-y[x]^2==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**2*(-atan(y(x)/x) + pi/2) + x*y(x)*Derivative(y(x), x) - y(x)**2,0) ics = {} dsolve(ode,func=y(x),ics=ics)