29.18.32 problem 510

Internal problem ID [5106]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 18
Problem number : 510
Date solved : Sunday, March 30, 2025 at 06:40:39 AM
CAS classification : [[_homogeneous, `class A`], _rational, [_Abel, `2nd type`, `class B`]]

\begin{align*} x y y^{\prime }&=x^{2}-x y+y^{2} \end{align*}

Maple. Time used: 0.012 (sec). Leaf size: 19
ode:=x*y(x)*diff(y(x),x) = x^2-x*y(x)+y(x)^2; 
dsolve(ode,y(x), singsol=all);
 
\[ y = x \left (\operatorname {LambertW}\left (\frac {{\mathrm e}^{-c_1 -1}}{x}\right )+1\right ) \]
Mathematica. Time used: 3.336 (sec). Leaf size: 25
ode=x y[x] D[y[x],x]==x^2-x y[x]+y[x]^2; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to x \left (1+W\left (\frac {e^{-1+c_1}}{x}\right )\right ) \\ y(x)\to x \\ \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x**2 + x*y(x)*Derivative(y(x), x) + x*y(x) - y(x)**2,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
RecursionError : maximum recursion depth exceeded