29.18.21 problem 497

Internal problem ID [5095]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 18
Problem number : 497
Date solved : Sunday, March 30, 2025 at 06:37:24 AM
CAS classification : [[_homogeneous, `class C`], _rational, [_Abel, `2nd type`, `class A`]]

\begin{align*} \left (140+7 x -16 y\right ) y^{\prime }+25+8 x +y&=0 \end{align*}

Maple. Time used: 0.229 (sec). Leaf size: 1561
ode:=(140+7*x-16*y(x))*diff(y(x),x)+25+8*x+y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ \text {Expression too large to display} \]
Mathematica. Time used: 60.064 (sec). Leaf size: 1673
ode=(140+7 x-16 y[x])D[y[x],x]+25+8 x+y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 

Too large to display

Sympy. Time used: 1.953 (sec). Leaf size: 36
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(8*x + (7*x - 16*y(x) + 140)*Derivative(y(x), x) + y(x) + 25,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \log {\left (y{\left (x \right )} - 7 \right )} = C_{1} - \log {\left (\left (\frac {x + 4}{y{\left (x \right )} - 7} - 1\right )^{\frac {3}{8}} \left (\frac {x + 4}{y{\left (x \right )} - 7} + 2\right )^{\frac {5}{8}} \right )} \]