29.18.10 problem 486

Internal problem ID [5084]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 18
Problem number : 486
Date solved : Sunday, March 30, 2025 at 06:36:00 AM
CAS classification : [[_homogeneous, `class C`], _exact, _rational, [_Abel, `2nd type`, `class A`]]

\begin{align*} \left (5+3 x -4 y\right ) y^{\prime }&=2+7 x -3 y \end{align*}

Maple. Time used: 0.185 (sec). Leaf size: 33
ode:=(5+3*x-4*y(x))*diff(y(x),x) = 2+7*x-3*y(x); 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {-\sqrt {4-6859 \left (x -\frac {7}{19}\right )^{2} c_1^{2}}+\left (57 x +95\right ) c_1}{76 c_1} \]
Mathematica. Time used: 0.134 (sec). Leaf size: 71
ode=(5+3 x-4 y[x])D[y[x],x]==2+7 x-3 y[x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to \frac {1}{4} \left (-i \sqrt {19 x^2-14 x-25-16 c_1}+3 x+5\right ) \\ y(x)\to \frac {1}{4} \left (i \sqrt {19 x^2-14 x-25-16 c_1}+3 x+5\right ) \\ \end{align*}
Sympy. Time used: 2.375 (sec). Leaf size: 51
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-7*x + (3*x - 4*y(x) + 5)*Derivative(y(x), x) + 3*y(x) - 2,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = \frac {3 x}{4} - \frac {\sqrt {C_{1} - 6859 x^{2} + 5054 x}}{76} + \frac {5}{4}, \ y{\left (x \right )} = \frac {3 x}{4} + \frac {\sqrt {C_{1} - 6859 x^{2} + 5054 x}}{76} + \frac {5}{4}\right ] \]