29.16.16 problem 459

Internal problem ID [5057]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 16
Problem number : 459
Date solved : Sunday, March 30, 2025 at 06:33:26 AM
CAS classification : [[_Abel, `2nd type`, `class A`]]

\begin{align*} \left (y-\cot \left (x \right ) \csc \left (x \right )\right ) y^{\prime }+\csc \left (x \right ) \left (1+y \cos \left (x \right )\right ) y&=0 \end{align*}

Maple. Time used: 0.008 (sec). Leaf size: 133
ode:=(y(x)-cot(x)*csc(x))*diff(y(x),x)+csc(x)*(1+y(x)*cos(x))*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= \frac {{\mathrm e}^{-i x} \csc \left (x \right )^{2} \left (\left ({\mathrm e}^{2 i x}-1\right ) \sqrt {\frac {\left (-2 c_1 +16\right ) {\mathrm e}^{2 i x}+c_1 \left ({\mathrm e}^{4 i x}+1\right )}{\left ({\mathrm e}^{i x}-1\right )^{2} \left ({\mathrm e}^{i x}+1\right )^{2}}}+2 \,{\mathrm e}^{2 i x}+2\right )}{4} \\ y &= -\frac {{\mathrm e}^{-i x} \csc \left (x \right )^{2} \left (\left ({\mathrm e}^{2 i x}-1\right ) \sqrt {\frac {\left (-2 c_1 +16\right ) {\mathrm e}^{2 i x}+c_1 \left ({\mathrm e}^{4 i x}+1\right )}{\left ({\mathrm e}^{i x}-1\right )^{2} \left ({\mathrm e}^{i x}+1\right )^{2}}}-2 \,{\mathrm e}^{2 i x}-2\right )}{4} \\ \end{align*}
Mathematica. Time used: 1.484 (sec). Leaf size: 85
ode=(y[x]-Cot[x] Csc[x])D[y[x],x]+Csc[x](1+y[x] Cos[x])y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to \cot (x) \csc (x)-\frac {i \csc ^2(x) \sqrt {(-1+c_1) \cos (2 x)-1-c_1}}{\sqrt {2}} \\ y(x)\to \cot (x) \csc (x)+\frac {i \csc ^2(x) \sqrt {(-1+c_1) \cos (2 x)-1-c_1}}{\sqrt {2}} \\ \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq((y(x)*cos(x) + 1)*y(x)/sin(x) + (y(x) - 1/(sin(x)*tan(x)))*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out