29.16.10 problem 453

Internal problem ID [5051]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 16
Problem number : 453
Date solved : Sunday, March 30, 2025 at 06:32:47 AM
CAS classification : [[_homogeneous, `class A`], _rational, [_Abel, `2nd type`, `class A`]]

\begin{align*} \left (4 x -y\right ) y^{\prime }+2 x -5 y&=0 \end{align*}

Maple. Time used: 0.087 (sec). Leaf size: 47
ode:=(4*x-y(x))*diff(y(x),x)+2*x-5*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= \frac {-4 c_1 x -\sqrt {-12 c_1 x +1}+1}{2 c_1} \\ y &= \frac {-4 c_1 x +1+\sqrt {-12 c_1 x +1}}{2 c_1} \\ \end{align*}
Mathematica. Time used: 1.347 (sec). Leaf size: 80
ode=(4 x-y[x])D[y[x],x]+2 x-5 y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to \frac {1}{2} \left (-4 x-e^{\frac {c_1}{2}} \sqrt {12 x+e^{c_1}}-e^{c_1}\right ) \\ y(x)\to \frac {1}{2} \left (-4 x+e^{\frac {c_1}{2}} \sqrt {12 x+e^{c_1}}-e^{c_1}\right ) \\ \end{align*}
Sympy. Time used: 1.972 (sec). Leaf size: 42
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(2*x + (4*x - y(x))*Derivative(y(x), x) - 5*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = - 2 C_{1} - 2 x - 2 \sqrt {C_{1} \left (C_{1} + 3 x\right )}, \ y{\left (x \right )} = - 2 C_{1} - 2 x + 2 \sqrt {C_{1} \left (C_{1} + 3 x\right )}\right ] \]