29.15.25 problem 433

Internal problem ID [5031]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 15
Problem number : 433
Date solved : Sunday, March 30, 2025 at 06:31:05 AM
CAS classification : [_separable]

\begin{align*} \left (1+y\right ) y^{\prime }&=x^{2} \left (1-y\right ) \end{align*}

Maple. Time used: 0.014 (sec). Leaf size: 20
ode:=(1+y(x))*diff(y(x),x) = x^2*(1-y(x)); 
dsolve(ode,y(x), singsol=all);
 
\[ y = 2 \operatorname {LambertW}\left (\frac {c_1 \,{\mathrm e}^{-\frac {x^{3}}{6}-\frac {1}{2}}}{2}\right )+1 \]
Mathematica. Time used: 22.285 (sec). Leaf size: 66
ode=(1+y[x])D[y[x],x]==x^2(1-y[x]); 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to 1+2 W\left (-\frac {1}{2} \sqrt {e^{-\frac {x^3}{3}-1+c_1}}\right ) \\ y(x)\to 1+2 W\left (\frac {1}{2} \sqrt {e^{-\frac {x^3}{3}-1+c_1}}\right ) \\ y(x)\to 1 \\ \end{align*}
Sympy. Time used: 10.255 (sec). Leaf size: 180
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x**2*(1 - y(x)) + (y(x) + 1)*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = 2 W\left (- \frac {\sqrt [6]{C_{1} e^{- x^{3}}}}{2 e^{\frac {1}{2}}}\right ) + 1, \ y{\left (x \right )} = 2 W\left (\frac {\sqrt [6]{C_{1} e^{- x^{3}}}}{2 e^{\frac {1}{2}}}\right ) + 1, \ y{\left (x \right )} = 2 W\left (\frac {\sqrt [6]{C_{1} e^{- x^{3}}} \left (-1 - \sqrt {3} i\right )}{4 e^{\frac {1}{2}}}\right ) + 1, \ y{\left (x \right )} = 2 W\left (\frac {\sqrt [6]{C_{1} e^{- x^{3}}} \left (-1 + \sqrt {3} i\right )}{4 e^{\frac {1}{2}}}\right ) + 1, \ y{\left (x \right )} = 2 W\left (\frac {\sqrt [6]{C_{1} e^{- x^{3}}} \left (1 - \sqrt {3} i\right )}{4 e^{\frac {1}{2}}}\right ) + 1, \ y{\left (x \right )} = 2 W\left (\frac {\sqrt [6]{C_{1} e^{- x^{3}}} \left (1 + \sqrt {3} i\right )}{4 e^{\frac {1}{2}}}\right ) + 1\right ] \]