29.15.23 problem 431

Internal problem ID [5029]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 15
Problem number : 431
Date solved : Sunday, March 30, 2025 at 06:30:54 AM
CAS classification : [NONE]

\begin{align*} y y^{\prime }+x +f \left (x^{2}+y^{2}\right ) g \left (x \right )&=0 \end{align*}

Maple. Time used: 0.020 (sec). Leaf size: 30
ode:=y(x)*diff(y(x),x)+x+f(x^2+y(x)^2)*g(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ \int _{\textit {\_b}}^{y}\frac {\textit {\_a}}{f \left (\textit {\_a}^{2}+x^{2}\right )}d \textit {\_a} +\int g \left (x \right )d x -c_1 = 0 \]
Mathematica. Time used: 0.298 (sec). Leaf size: 95
ode=y[x] D[y[x],x]+x+f[x^2+y[x]^2] g[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ \text {Solve}\left [\int _1^{y(x)}\left (\frac {K[2]}{f\left (x^2+K[2]^2\right )}-\int _1^x-\frac {2 K[1] K[2] f''\left (K[1]^2+K[2]^2\right )}{f\left (K[1]^2+K[2]^2\right )^2}dK[1]\right )dK[2]+\int _1^x\left (g(K[1])+\frac {K[1]}{f\left (K[1]^2+y(x)^2\right )}\right )dK[1]=c_1,y(x)\right ] \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x + f(x**2 + y(x)**2)*g(x) + y(x)*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE -(-x - f(x**2 + y(x)**2)*g(x))/y(x) + Derivative(y(x), x) cannot be solved by the factorable group method