29.15.8 problem 416

Internal problem ID [5014]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 15
Problem number : 416
Date solved : Sunday, March 30, 2025 at 04:31:11 AM
CAS classification : [_linear]

\begin{align*} y^{\prime } x \ln \left (x \right )&=a x \left (1+\ln \left (x \right )\right )-y \end{align*}

Maple. Time used: 0.001 (sec). Leaf size: 14
ode:=diff(y(x),x)*x*ln(x) = a*x*(1+ln(x))-y(x); 
dsolve(ode,y(x), singsol=all);
 
\[ y = a x +\frac {c_1}{\ln \left (x \right )} \]
Mathematica. Time used: 0.042 (sec). Leaf size: 16
ode=D[y[x],x] x Log[x]==a x(1+Log[x])-y[x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to a x+\frac {c_1}{\log (x)} \]
Sympy. Time used: 0.284 (sec). Leaf size: 10
from sympy import * 
x = symbols("x") 
a = symbols("a") 
y = Function("y") 
ode = Eq(-a*x*(log(x) + 1) + x*log(x)*Derivative(y(x), x) + y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \frac {C_{1}}{\log {\left (x \right )}} + a x \]