29.14.18 problem 399

Internal problem ID [4997]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 14
Problem number : 399
Date solved : Sunday, March 30, 2025 at 04:29:46 AM
CAS classification : [_rational, [_Riccati, _special]]

\begin{align*} x^{{3}/{2}} y^{\prime }&=a +b \,x^{{3}/{2}} y^{2} \end{align*}

Maple. Time used: 0.004 (sec). Leaf size: 122
ode:=x^(3/2)*diff(y(x),x) = a+b*x^(3/2)*y(x)^2; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {2 a \left (\operatorname {BesselJ}\left (1, 4 \sqrt {a}\, \sqrt {b}\, x^{{1}/{4}}\right ) c_1 +\operatorname {BesselY}\left (1, 4 \sqrt {a}\, \sqrt {b}\, x^{{1}/{4}}\right )\right )}{\sqrt {x}\, \left (2 \operatorname {BesselJ}\left (0, 4 \sqrt {a}\, \sqrt {b}\, x^{{1}/{4}}\right ) \sqrt {a}\, \sqrt {b}\, x^{{1}/{4}} c_1 +2 \operatorname {BesselY}\left (0, 4 \sqrt {a}\, \sqrt {b}\, x^{{1}/{4}}\right ) \sqrt {a}\, \sqrt {b}\, x^{{1}/{4}}-\operatorname {BesselJ}\left (1, 4 \sqrt {a}\, \sqrt {b}\, x^{{1}/{4}}\right ) c_1 -\operatorname {BesselY}\left (1, 4 \sqrt {a}\, \sqrt {b}\, x^{{1}/{4}}\right )\right )} \]
Mathematica. Time used: 0.265 (sec). Leaf size: 373
ode=x^(3/2) D[y[x],x]==a+ b x^(3/2) y[x]^2; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to -\frac {\sqrt {a} \sqrt {b} \sqrt [4]{x} \operatorname {BesselY}\left (1,4 \sqrt {a} \sqrt {b} \sqrt [4]{x}\right )+\operatorname {BesselY}\left (2,4 \sqrt {a} \sqrt {b} \sqrt [4]{x}\right )-\sqrt {a} \sqrt {b} \sqrt [4]{x} \operatorname {BesselY}\left (3,4 \sqrt {a} \sqrt {b} \sqrt [4]{x}\right )-\sqrt {a} \sqrt {b} c_1 \sqrt [4]{x} \operatorname {BesselJ}\left (1,4 \sqrt {a} \sqrt {b} \sqrt [4]{x}\right )-c_1 \operatorname {BesselJ}\left (2,4 \sqrt {a} \sqrt {b} \sqrt [4]{x}\right )+\sqrt {a} \sqrt {b} c_1 \sqrt [4]{x} \operatorname {BesselJ}\left (3,4 \sqrt {a} \sqrt {b} \sqrt [4]{x}\right )}{2 b x \operatorname {BesselY}\left (2,4 \sqrt {a} \sqrt {b} \sqrt [4]{x}\right )-2 b c_1 x \operatorname {BesselJ}\left (2,4 \sqrt {a} \sqrt {b} \sqrt [4]{x}\right )} \\ y(x)\to -\frac {\sqrt {a} \sqrt {b} \sqrt [4]{x} \operatorname {BesselJ}\left (1,4 \sqrt {a} \sqrt {b} \sqrt [4]{x}\right )+\operatorname {BesselJ}\left (2,4 \sqrt {a} \sqrt {b} \sqrt [4]{x}\right )-\sqrt {a} \sqrt {b} \sqrt [4]{x} \operatorname {BesselJ}\left (3,4 \sqrt {a} \sqrt {b} \sqrt [4]{x}\right )}{2 b x \operatorname {BesselJ}\left (2,4 \sqrt {a} \sqrt {b} \sqrt [4]{x}\right )} \\ \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
b = symbols("b") 
y = Function("y") 
ode = Eq(-a - b*x**(3/2)*y(x)**2 + x**(3/2)*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE -a/x**(3/2) - b*y(x)**2 + Derivative(y(x), x) cannot be solved by the factorable group method