29.14.15 problem 396

Internal problem ID [4994]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 14
Problem number : 396
Date solved : Sunday, March 30, 2025 at 04:29:25 AM
CAS classification : [_separable]

\begin{align*} x y^{\prime } \sqrt {-a^{2}+x^{2}}&=y \sqrt {y^{2}-b^{2}} \end{align*}

Maple. Time used: 0.002 (sec). Leaf size: 135
ode:=x*diff(y(x),x)*(-a^2+x^2)^(1/2) = y(x)*(y(x)^2-b^2)^(1/2); 
dsolve(ode,y(x), singsol=all);
 
\[ \frac {c_1 \sqrt {-a^{2}}\, \sqrt {-b^{2}}-\sqrt {-b^{2}}\, \ln \left (\frac {\sqrt {-a^{2}}\, \sqrt {-a^{2}+x^{2}}-a^{2}}{x}\right )+\sqrt {-a^{2}}\, \ln \left (\frac {\sqrt {-b^{2}}\, \sqrt {y^{2}-b^{2}}-b^{2}}{y}\right )-\sqrt {-b^{2}}\, \ln \left (2\right )+\sqrt {-a^{2}}\, \ln \left (2\right )}{\sqrt {-a^{2}}\, \sqrt {-b^{2}}} = 0 \]
Mathematica. Time used: 18.123 (sec). Leaf size: 101
ode=x D[y[x],x] Sqrt[x^2-a^2]==y[x] Sqrt[y[x]^2-b^2]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to -b \sqrt {\sec ^2\left (\frac {b \left (\arctan \left (\frac {\sqrt {x^2-a^2}}{a}\right )+a c_1\right )}{a}\right )} \\ y(x)\to b \sqrt {\sec ^2\left (\frac {b \left (\arctan \left (\frac {\sqrt {x^2-a^2}}{a}\right )+a c_1\right )}{a}\right )} \\ y(x)\to 0 \\ y(x)\to -b \\ y(x)\to b \\ \end{align*}
Sympy. Time used: 2.619 (sec). Leaf size: 34
from sympy import * 
x = symbols("x") 
a = symbols("a") 
b = symbols("b") 
y = Function("y") 
ode = Eq(x*sqrt(-a**2 + x**2)*Derivative(y(x), x) - sqrt(-b**2 + y(x)**2)*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \int \limits ^{y{\left (x \right )}} \frac {1}{y \sqrt {- \left (- y + b\right ) \left (y + b\right )}}\, dy = C_{1} + \int \frac {1}{x \sqrt {\left (- a + x\right ) \left (a + x\right )}}\, dx \]