29.14.13 problem 394

Internal problem ID [4992]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 14
Problem number : 394
Date solved : Sunday, March 30, 2025 at 04:28:55 AM
CAS classification : [_separable]

\begin{align*} y^{\prime } \sqrt {b^{2}-x^{2}}&=\sqrt {a^{2}-y^{2}} \end{align*}

Maple. Time used: 0.002 (sec). Leaf size: 37
ode:=diff(y(x),x)*(b^2-x^2)^(1/2) = (a^2-y(x)^2)^(1/2); 
dsolve(ode,y(x), singsol=all);
 
\[ \arctan \left (\frac {x}{\sqrt {b^{2}-x^{2}}}\right )-\arctan \left (\frac {y}{\sqrt {a^{2}-y^{2}}}\right )+c_1 = 0 \]
Mathematica. Time used: 4.742 (sec). Leaf size: 118
ode=D[y[x],x] Sqrt[b^2-x^2]==Sqrt[a^2-y[x]^2]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to \frac {a \tan \left (\arctan \left (\frac {x}{\sqrt {b^2-x^2}}\right )+c_1\right )}{\sqrt {\sec ^2\left (\arctan \left (\frac {x}{\sqrt {b^2-x^2}}\right )+c_1\right )}} \\ y(x)\to -\frac {a \tan \left (\arctan \left (\frac {x}{\sqrt {b^2-x^2}}\right )+c_1\right )}{\sqrt {\sec ^2\left (\arctan \left (\frac {x}{\sqrt {b^2-x^2}}\right )+c_1\right )}} \\ y(x)\to -a \\ y(x)\to a \\ \end{align*}
Sympy. Time used: 13.414 (sec). Leaf size: 335
from sympy import * 
x = symbols("x") 
a = symbols("a") 
b = symbols("b") 
y = Function("y") 
ode = Eq(-sqrt(a**2 - y(x)**2) + sqrt(b**2 - x**2)*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = \begin {cases} \frac {4 C_{1} b^{2}}{- 8 x e^{C_{1}} + 8 i \sqrt {b^{2} - x^{2}} e^{C_{1}}} - \frac {8 C_{1} x^{2}}{- 8 x e^{C_{1}} + 8 i \sqrt {b^{2} - x^{2}} e^{C_{1}}} + \frac {8 i C_{1} x \sqrt {b^{2} - x^{2}}}{- 8 x e^{C_{1}} + 8 i \sqrt {b^{2} - x^{2}} e^{C_{1}}} - \frac {a^{2}}{- 2 x e^{C_{1}} + 2 i \sqrt {b^{2} - x^{2}} e^{C_{1}}} & \text {for}\: a^{2} \neq 0 \wedge b^{2} \neq 0 \\\text {NaN} & \text {otherwise} \end {cases}, \ y{\left (x \right )} = \begin {cases} - a^{2} e^{- i C_{1} - \frac {i x \log {\left (x \right )}}{\sqrt {- x^{2}}}} - \frac {e^{i C_{1} + \frac {i x \log {\left (x \right )}}{\sqrt {- x^{2}}}}}{4} & \text {for}\: b^{2} = 0 \wedge a^{2} \neq 0 \\\text {NaN} & \text {otherwise} \end {cases}, \ y{\left (x \right )} = \begin {cases} \frac {1}{- 2 C_{1} x + 2 i C_{1} \sqrt {b^{2} - x^{2}}} & \text {for}\: a^{2} = 0 \wedge b^{2} \neq 0 \\\text {NaN} & \text {otherwise} \end {cases}, \ y{\left (x \right )} = \begin {cases} - 2 C_{1} x + 2 i C_{1} \sqrt {b^{2} - x^{2}} & \text {for}\: a^{2} = 0 \wedge b^{2} \neq 0 \\\text {NaN} & \text {otherwise} \end {cases}, \ y{\left (x \right )} = \begin {cases} e^{- \sqrt {- C_{1}^{2} + \frac {2 C_{1} \sqrt {- x^{2}} \log {\left (x \right )}}{x} + \log {\left (x \right )}^{2}}} & \text {for}\: a^{2} = 0 \wedge b^{2} = 0 \\\text {NaN} & \text {otherwise} \end {cases}, \ y{\left (x \right )} = \begin {cases} e^{\sqrt {- C_{1}^{2} + \frac {2 C_{1} \sqrt {- x^{2}} \log {\left (x \right )}}{x} + \log {\left (x \right )}^{2}}} & \text {for}\: a^{2} = 0 \wedge b^{2} = 0 \\\text {NaN} & \text {otherwise} \end {cases}\right ] \]