Internal
problem
ID
[4984]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Various
14
Problem
number
:
385
Date
solved
:
Sunday, March 30, 2025 at 04:28:15 AM
CAS
classification
:
[[_homogeneous, `class G`], _Riccati]
ode:=x^n*diff(y(x),x) = a^2*x^(2*n-2)+b^2*y(x)^2; dsolve(ode,y(x), singsol=all);
ode=x^n D[y[x],x]==a^2 x^(2 n-2)+b^2 y[x]^2; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") n = symbols("n") y = Function("y") ode = Eq(-a**2*x**(2*n - 2) - b**2*y(x)**2 + x**n*Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (a**2*x**(2*n - 2) + b**2*y(x)**2)/x**n cannot be solved by the factorable group method