29.12.30 problem 349

Internal problem ID [4949]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 12
Problem number : 349
Date solved : Sunday, March 30, 2025 at 04:17:41 AM
CAS classification : [[_homogeneous, `class G`], _rational, _Riccati]

\begin{align*} x^{3} y^{\prime }+20+x^{2} y \left (1-x^{2} y\right )&=0 \end{align*}

Maple. Time used: 0.215 (sec). Leaf size: 26
ode:=x^3*diff(y(x),x)+20+x^2*y(x)*(1-x^2*y(x)) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {5 x^{9}+4 c_1}{x^{2} \left (-x^{9}+c_1 \right )} \]
Mathematica. Time used: 0.165 (sec). Leaf size: 36
ode=x^3 D[y[x],x]+20+x^2 y[x](1-x^2 y[x])==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to \frac {-5 x^9+4 c_1}{x^2 \left (x^9+c_1\right )} \\ y(x)\to \frac {4}{x^2} \\ \end{align*}
Sympy. Time used: 0.354 (sec). Leaf size: 22
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**3*Derivative(y(x), x) + x**2*(-x**2*y(x) + 1)*y(x) + 20,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \frac {4 C_{1} - 5 x^{9} - 4}{x^{2} \left (C_{1} + x^{9} - 1\right )} \]