Internal
problem
ID
[4945]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Various
12
Problem
number
:
345
Date
solved
:
Sunday, March 30, 2025 at 04:17:30 AM
CAS
classification
:
[[_homogeneous, `class G`], _rational, _Riccati]
ode:=x^3*diff(y(x),x) = x^4+y(x)^2; dsolve(ode,y(x), singsol=all);
ode=x^3 D[y[x],x]==x^4+y[x]^2; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-x**4 + x**3*Derivative(y(x), x) - y(x)**2,0) ics = {} dsolve(ode,func=y(x),ics=ics)