29.11.25 problem 316

Internal problem ID [4916]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 11
Problem number : 316
Date solved : Sunday, March 30, 2025 at 04:13:16 AM
CAS classification : [_linear]

\begin{align*} x \left (1-x \right ) y^{\prime }+2-3 x y+y&=0 \end{align*}

Maple. Time used: 0.001 (sec). Leaf size: 21
ode:=x*(1-x)*diff(y(x),x)+2-3*x*y(x)+y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {x^{2}+c_1 -2 x}{\left (-1+x \right )^{2} x} \]
Mathematica. Time used: 0.038 (sec). Leaf size: 23
ode=x(1-x)D[y[x],x]+(2-3 x y[x]+y[x])==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \frac {x^2-2 x+c_1}{(x-1)^2 x} \]
Sympy. Time used: 0.359 (sec). Leaf size: 17
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x*(1 - x)*Derivative(y(x), x) - 3*x*y(x) + y(x) + 2,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \frac {\frac {C_{1}}{x} + x - 2}{x^{2} - 2 x + 1} \]