Internal
problem
ID
[4902]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Various
11
Problem
number
:
302
Date
solved
:
Sunday, March 30, 2025 at 04:09:50 AM
CAS
classification
:
[`y=_G(x,y')`]
ode:=(x^2+1)*diff(y(x),x)+x*sin(y(x))*cos(y(x)) = x*(x^2+1)*cos(y(x))^2; dsolve(ode,y(x), singsol=all);
ode=(1+x^2)D[y[x],x]+x Sin[y[x]] Cos[y[x]]==x(1+x^2) (Cos[y[x]])^2; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-x*(x**2 + 1)*cos(y(x))**2 + x*sin(y(x))*cos(y(x)) + (x**2 + 1)*Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out