29.10.23 problem 289

Internal problem ID [4889]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 10
Problem number : 289
Date solved : Sunday, March 30, 2025 at 04:09:10 AM
CAS classification : [_linear]

\begin{align*} \left (x^{2}+1\right ) y^{\prime }&=2 x \left (x -y\right ) \end{align*}

Maple. Time used: 0.001 (sec). Leaf size: 23
ode:=(x^2+1)*diff(y(x),x) = 2*x*(x-y(x)); 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {2 x^{3}+3 c_1}{3 x^{2}+3} \]
Mathematica. Time used: 0.035 (sec). Leaf size: 25
ode=(1+x^2)D[y[x],x]==2 x(x-y[x]); 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \frac {2 x^3+3 c_1}{3 x^2+3} \]
Sympy. Time used: 0.286 (sec). Leaf size: 15
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-2*x*(x - y(x)) + (x**2 + 1)*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \frac {C_{1} + \frac {2 x^{3}}{3}}{x^{2} + 1} \]