29.10.3 problem 269

Internal problem ID [4869]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 10
Problem number : 269
Date solved : Sunday, March 30, 2025 at 04:08:02 AM
CAS classification : [_rational, _Riccati]

\begin{align*} x^{2} y^{\prime }&=a +b x y+c \,x^{4} y^{2} \end{align*}

Maple. Time used: 0.002 (sec). Leaf size: 111
ode:=x^2*diff(y(x),x) = a+b*x*y(x)+c*x^4*y(x)^2; 
dsolve(ode,y(x), singsol=all);
 
\[ y = -\frac {a \left (\operatorname {BesselY}\left (-\frac {b}{2}-\frac {1}{2}, \sqrt {c a}\, x \right ) c_1 +\operatorname {BesselJ}\left (-\frac {b}{2}-\frac {1}{2}, \sqrt {c a}\, x \right )\right )}{x \left (x \sqrt {c a}\, \left (\operatorname {BesselY}\left (-\frac {b}{2}+\frac {1}{2}, \sqrt {c a}\, x \right ) c_1 +\operatorname {BesselJ}\left (-\frac {b}{2}+\frac {1}{2}, \sqrt {c a}\, x \right )\right )+\left (b +1\right ) \left (\operatorname {BesselY}\left (-\frac {b}{2}-\frac {1}{2}, \sqrt {c a}\, x \right ) c_1 +\operatorname {BesselJ}\left (-\frac {b}{2}-\frac {1}{2}, \sqrt {c a}\, x \right )\right )\right )} \]
Mathematica. Time used: 0.329 (sec). Leaf size: 394
ode=x^2 D[y[x],x]==a+b x y[x]+c x^4 y[x]^2; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to -\frac {\sqrt {a} \sqrt {c} x \operatorname {BesselY}\left (\frac {b+1}{2},\sqrt {a} \sqrt {c} x\right )+(b+3) \operatorname {BesselY}\left (\frac {b+3}{2},\sqrt {a} \sqrt {c} x\right )-\sqrt {a} \sqrt {c} x \operatorname {BesselY}\left (\frac {b+5}{2},\sqrt {a} \sqrt {c} x\right )+\sqrt {a} \sqrt {c} c_1 x \operatorname {BesselJ}\left (\frac {b+1}{2},\sqrt {a} \sqrt {c} x\right )+b c_1 \operatorname {BesselJ}\left (\frac {b+3}{2},\sqrt {a} \sqrt {c} x\right )+3 c_1 \operatorname {BesselJ}\left (\frac {b+3}{2},\sqrt {a} \sqrt {c} x\right )-\sqrt {a} \sqrt {c} c_1 x \operatorname {BesselJ}\left (\frac {b+5}{2},\sqrt {a} \sqrt {c} x\right )}{2 c x^3 \left (\operatorname {BesselY}\left (\frac {b+3}{2},\sqrt {a} \sqrt {c} x\right )+c_1 \operatorname {BesselJ}\left (\frac {b+3}{2},\sqrt {a} \sqrt {c} x\right )\right )} \\ y(x)\to -\frac {\sqrt {a} \sqrt {c} x \operatorname {BesselJ}\left (\frac {b+1}{2},\sqrt {a} \sqrt {c} x\right )+(b+3) \operatorname {BesselJ}\left (\frac {b+3}{2},\sqrt {a} \sqrt {c} x\right )-\sqrt {a} \sqrt {c} x \operatorname {BesselJ}\left (\frac {b+5}{2},\sqrt {a} \sqrt {c} x\right )}{2 c x^3 \operatorname {BesselJ}\left (\frac {b+3}{2},\sqrt {a} \sqrt {c} x\right )} \\ \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
b = symbols("b") 
c = symbols("c") 
y = Function("y") 
ode = Eq(-a - b*x*y(x) - c*x**4*y(x)**2 + x**2*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out