Internal
problem
ID
[4861]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Various
9
Problem
number
:
261
Date
solved
:
Sunday, March 30, 2025 at 04:04:44 AM
CAS
classification
:
[[_homogeneous, `class A`], _rational, _Bernoulli]
ode:=x^2*diff(y(x),x) = (a*x+b*y(x))*y(x); dsolve(ode,y(x), singsol=all);
ode=x^2 D[y[x],x]==(a x+b y[x])y[x]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") y = Function("y") ode = Eq(x**2*Derivative(y(x), x) - (a*x + b*y(x))*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)