29.8.7 problem 212

Internal problem ID [4812]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 8
Problem number : 212
Date solved : Sunday, March 30, 2025 at 03:59:29 AM
CAS classification : [`y=_G(x,y')`]

\begin{align*} x y^{\prime }&=\left (1+y^{2}\right ) \left (x^{2}+\arctan \left (y\right )\right ) \end{align*}

Maple. Time used: 0.017 (sec). Leaf size: 10
ode:=x*diff(y(x),x) = (1+y(x)^2)*(x^2+arctan(y(x))); 
dsolve(ode,y(x), singsol=all);
 
\[ y = \tan \left (x \left (x +c_1 \right )\right ) \]
Mathematica. Time used: 0.357 (sec). Leaf size: 14
ode=x D[y[x],x]==(1+y[x]^2)(x^2+ArcTan[y[x]]); 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \tan (x (x+2 c_1)) \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x*Derivative(y(x), x) - (x**2 + atan(y(x)))*(y(x)**2 + 1),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE Derivative(y(x), x) - (x**2*(y(x)**2 + 1) + y(x)**2*atan(y(x)) + atan(y(x)))/x cannot be solved by the factorable group method