29.7.4 problem 179

Internal problem ID [4779]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 7
Problem number : 179
Date solved : Sunday, March 30, 2025 at 03:54:08 AM
CAS classification : [_rational, _Riccati]

\begin{align*} x y^{\prime }+\operatorname {a0} +\operatorname {a1} x +\left (\operatorname {a2} +\operatorname {a3} x y\right ) y&=0 \end{align*}

Maple. Time used: 0.035 (sec). Leaf size: 403
ode:=x*diff(y(x),x)+a0+a1*x+(a2+a3*x*y(x))*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} \text {Solution too large to show}\end{align*}

Mathematica. Time used: 0.445 (sec). Leaf size: 421
ode=x D[y[x],x]+a0+a1 x+(a2+a3 x y[x])y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to -\frac {i \left (\sqrt {\text {a1}} c_1 \operatorname {HypergeometricU}\left (\frac {1}{2} \left (\frac {i \sqrt {\text {a3}} \text {a0}}{\sqrt {\text {a1}}}+\text {a2}\right ),\text {a2},2 i \sqrt {\text {a1}} \sqrt {\text {a3}} x\right )+c_1 \left (\sqrt {\text {a1}} \text {a2}+i \text {a0} \sqrt {\text {a3}}\right ) \operatorname {HypergeometricU}\left (\frac {1}{2} \left (\frac {i \sqrt {\text {a3}} \text {a0}}{\sqrt {\text {a1}}}+\text {a2}+2\right ),\text {a2}+1,2 i \sqrt {\text {a1}} \sqrt {\text {a3}} x\right )+\sqrt {\text {a1}} \left (2 L_{-\frac {i \sqrt {\text {a3}} \text {a0}}{2 \sqrt {\text {a1}}}-\frac {\text {a2}}{2}-1}^{\text {a2}}\left (2 i \sqrt {\text {a1}} \sqrt {\text {a3}} x\right )+L_{-\frac {i \sqrt {\text {a3}} \text {a0}}{2 \sqrt {\text {a1}}}-\frac {\text {a2}}{2}}^{\text {a2}-1}\left (2 i \sqrt {\text {a1}} \sqrt {\text {a3}} x\right )\right )\right )}{\sqrt {\text {a3}} \left (c_1 \operatorname {HypergeometricU}\left (\frac {1}{2} \left (\frac {i \sqrt {\text {a3}} \text {a0}}{\sqrt {\text {a1}}}+\text {a2}\right ),\text {a2},2 i \sqrt {\text {a1}} \sqrt {\text {a3}} x\right )+L_{-\frac {i \sqrt {\text {a3}} \text {a0}}{2 \sqrt {\text {a1}}}-\frac {\text {a2}}{2}}^{\text {a2}-1}\left (2 i \sqrt {\text {a1}} \sqrt {\text {a3}} x\right )\right )} \\ y(x)\to \frac {\frac {\left (\text {a0} \sqrt {\text {a3}}-i \sqrt {\text {a1}} \text {a2}\right ) \operatorname {HypergeometricU}\left (\frac {1}{2} \left (\frac {i \sqrt {\text {a3}} \text {a0}}{\sqrt {\text {a1}}}+\text {a2}+2\right ),\text {a2}+1,2 i \sqrt {\text {a1}} \sqrt {\text {a3}} x\right )}{\operatorname {HypergeometricU}\left (\frac {1}{2} \left (\frac {i \sqrt {\text {a3}} \text {a0}}{\sqrt {\text {a1}}}+\text {a2}\right ),\text {a2},2 i \sqrt {\text {a1}} \sqrt {\text {a3}} x\right )}-i \sqrt {\text {a1}}}{\sqrt {\text {a3}}} \\ \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
a0 = symbols("a0") 
a1 = symbols("a1") 
a2 = symbols("a2") 
a3 = symbols("a3") 
y = Function("y") 
ode = Eq(a0 + a1*x + x*Derivative(y(x), x) + (a2 + a3*x*y(x))*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out