Internal
problem
ID
[4712]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Various
4
Problem
number
:
110
Date
solved
:
Sunday, March 30, 2025 at 03:48:03 AM
CAS
classification
:
[`y=_G(x,y')`]
ode:=diff(y(x),x)+f(x)+g(x)*sin(a*y(x))+h(x)*cos(a*y(x)) = 0; dsolve(ode,y(x), singsol=all);
ode=D[y[x],x]+f[x]+g[x]Sin[a y[x]]+h[x] Cos[a y[x]]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
Not solved
from sympy import * x = symbols("x") a = symbols("a") y = Function("y") h = Function("h") g = Function("g") ode = Eq(f(x) + g(x)*sin(a*y(x)) + h(x)*cos(a*y(x)) + Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE f(x) + g(x)*sin(a*y(x)) + h(x)*cos(a*y(x)) + Derivative(y(x), x) cannot be solved by the lie group method